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The Problem

A significant quantity of aluminum and chromium are
present in HLW storage in the Hanford tank farm

* Most of this aluminum is insoluble

* Much of the chromium is insoluble as well
* Aluminum doesn’t go into glass well
 Chromium really doesn’t go into glass well

* HLW sludges are to be disposed of in glass



Background

* Most abundant elements In the tanks include Fe, Al,
P, Ca, SI, and Bi

e Aluminum is one of the most prevalent elements
(nearly 70% of the sludge)

e Aluminum is mainly found in the form of:
— Gibbsite {Al(OH);} — as micrometer sized colloidal particles
— Boehmite {AIOOH} — as agglomerates of nanometer sized
particles

e Chromium is a minor component (~ 3%) of the
sludge



Al Sources In Hanford Sludge Waste
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Al key sources

e Redox
— Contains predominately boehmite
— Average 90+ % aluminum in solids
— Average leach factor from BBI of 0.42

e Cladding Waste from Purex
— Contains predominately gibbsite
— Average 90+ % aluminum in solids
— Average leach factor from BBI of 0.8
e Bi-Phosphate saltcake
— Most samples to date blended with other sludges

e Cladding Waste from Redox
— Effectively no data
— Average leach factor from BBI of 0.9




Cr Sources in Hanford Sludge Waste
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S/SX Sludges

* Predominate Al phase is boehmite
* Gibbsite is easily dissolved by heating with caustic

* Boehmite requires more aggressive conditions
(higher temperatures and longer times)

e Dissolution of Cr Is simultaneous with aluminum



Composition of Typical S/SX Sludge of

Interest
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S-104 (Redox) - boehmite




SEM examples from literature

Fig. 1. SEM mucrographs showing exmamples of 1+ ANCH), crystal morphologies, with (a) lozenge, (b} hexagon, (c) prisme and (d)
agglomemate. The length of the scale bar in the inset is in pn.

e Battelle

i - ~ The Business of Innovation



Test Protocol

e Typically about 1 g of sludge in 100 mL of caustic In
sealed vessel

e Agitated — either stir bar or shaken
* Temperature maintained by a heating block
e Small— 1 mL - samples removed periodically

 Samples analyzed for metal content

* Residual sludge digested and analyzed to complete
material balance



Aluminum Solids (Mass Fraction)
for 3 M NaOH In Tank S-110
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Lumetta, G.J. et al., Caustic Leaching of Hanford Tank S-110 Sludge.
PNNL-13702; Pacific Northwest National Laboratory: Richland, WA, 2001.



S-110 Boehmite Dissolution at 100 °C
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Aluminum Sludge Leaching Model

Shrinking particle model modified for a distribution of platelet particles.
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S-101 Boehmite Dissolution at 100 °C
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S-107 Boehmite Dissolution at 100 °C -
3M NaOH
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Composition for Redox waste after extended
leach
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Boehmite Conclusions

* Boehmite can be dissolved from HLW sludge with
sufficient time, temperature and caustic

* A model was developed based on the boehmite
dissolution rate data

* Additional characterization data (correlated with
leaching data) needed to validate dissolution model
and to validate simulant development



Gibbsite dissolution data

* Limited testing has been performed with HLW
sludge samples containing sludge

* No kinetic information is available for gibbsite
dissolution

* Test typically employed 5 or 10 hour contact time at
100 °C with 3 M NaOH.



C-105 example (CWP) - gibbsite
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Typical CWP waste before leaching
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CWP Composition after leaching
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How much caustic Is required?

* Avoid precipitation after filtration
— Dilution can cause precipitation
— Cooling can cause precipitaton

* Provide sufficient caustic to get adequate kinetics

— For feeds that are a blend of boehmite and gibbsite,
gibbsite will dissolve first and may decrease boehmite
dissolution



Recrystallization of gibbsite from
supersaturated solutions

Crystal Growth rate
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Al concentration in solution (mg/L)

Al concentration in 3 M NaOH solution
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Conclusions for Al Dissolution

e Extended times (at least 72 hours) required to dissolve
boehmite

e Dissolution rate is sensitive to caustic concentration and to
total aluminum inventory

e Limited data available on gibbsite dissolution

e Additional boehmite testing will focus on obtaining additional
characterization data to support boehmite simulant validation

e Additional gibbsite testing required to provide better basis for
gibbsite dissolution performance

* Interactions between gibbsite and boehmite may be
Important for blended feeds.



Cr Sources

e Redox
— Dissolves as boehmite dissolves

e S-Salt cake

— Highly concentrated Cr stream (approximately 50% of insoluble solids
are Cr).

— Some dissolution at 100 °C — 12% in 10 hours.

e Bi-Phosphate saltcake
— Most samples to date blended with other sludges



Redox Chromium Solids (Mass Fraction)
for 3 M NaOH In Tank S$S-110
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Lumetta, G.J. et al., Caustic Leaching of Hanford Tank S-110 Sludge.

PNNL-13702; Pacific Northwest National Laboratory: Richland, WA, 2001.



Chromium Sources In Saltcake

Balance A
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Mass Fraction of Component

Composition of High Cr Saltcake
(Without Na)
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S- Saltcake composition
- without Na which is 75% of metal mass
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Cr removal mechanism

e Cris oxidized from Cr3+ (insoluble) to Cr6+ (soluble)

e Oxidation can be by air or by an oxidant (permanganate)
— Permanganate oxidizes 80-95% of the available chromium
— Rate increases with temperature
— High hydroxide during addition results in Pu solubilization
— No detailed rate data available
— Air oxidation appears to be slow



Slow Apparent Oxygen Dissolution Rate,
Tank U-108

Room Tem 80°C
- > <t >
0.08 -
0.07 -
Permanganate at 3 M NaOH
0.06 - —@ o—
@/e/o Permanganate at 0.1 M NaOH
_ 0.05
=
o, 0.04
Q
)
= 003 | Oxygen at 3 M NaOH
0.02 -
0.01 -
Oxygen at 0.1 M NaOH
— —F]
O 74. s v :1' E T l_j‘ rj T T T T L‘j T T T T T T T T T T T T T T T T T
0 20 40 60 80 100 120 140 160

Total Time (Hrs)



Slow Apparent Oxygen Dissolution Rate,
Tank U-109
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Composition of Initial and Final, Leached
U-108 Samples
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Composition of Initial and Final, Leached
U-109 Samples
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Permanganate Reaction

e Cr(lll) is poorly soluble in alkaline media

* Cr(lll) dissolves In the presence of permanganate
when the Cr(lll) is oxidized to Cr(VI)

e Cr(V1) is highly soluble in alkaline media

Cr(OH), + MnO,” +OH~ — CrO,” +MnO, +2H,0



Conclusions for Cr Dissolution

* Air oxidation appears adequate for treatment of Cr in
Hanford sludge samples

* More aggressive oxidation technigues may be
required to deal with Cr present in saltcake

* Additional testing Is planned to further investigate
the use of permanganate to achieve oxidation of Cr
In saltcake samples.

e Successful demonstration will result in dramatic
reduction in the number of HLW canisters and a
concomitant reduction In life cycle costs.



Testing Objectives

e Obtain leaching performance data for actual waste
for the major species involved in leaching reactions

— Supports simulant revision/development
— Provides basis for leaching performance

e Obtain filtration performance data for a spectrum of
additional actual waste samples

* Develop preliminary simulants based on available
data for use Iin pilot scale work (pilot scale scope not
covered here)

* Revise simulants based on actual waste results

* Test preliminary and revised simulants under variety
of parametric conditions at the bench scale.



Overall approach

* [dentify components of interest
* |dentify primary sources of components of interest

* Develop component simulants for each of the
components of interest

* |dentify tank samples from the sources of
components of interest

e Characterize and test composite samples from
multiple tanks representing feed groupings.

* More details to be provided in R&D plans discussion



